PM_{2.5} Sulfate and Organic Carbon Estimates for 2010

Stephen F. Mueller Tennessee Valley Authority

J.W. Boylan, A.G. Russell, M.T. Odman and J.G. Wilkinson Georgia Institute of Technology

SAMI

- The Southern Appalachian Mountains Initiative (SAMI) is an organization established in 1992 by air directors of the 8 southern Appalachian states (AL, GA, KY, NC, SC, TN, VA, WV).
- SAMI is developing strategies for improving air quality in Class I areas within southern Appalachians.

Base Year Episodes

- SAMI commissioned air quality modeling of episodes during base years of 1991-1995.
- Episodes were selected to be statistically representative of ozone, fine particles and acid deposition during base years at Shenandoah and Great Smoky Mts.

Projections of Future Air Quality

- Projections of air quality to 2010 & 2040 were modeled & results compared to base year conditions.
- SAMI developed emissions inventories for different futures, including a so-called "On the Way", or A2, scenario.

Applicability of Results

- SAMI modeling is oriented toward selected Class 1 areas.
- Results for wider region can be examined for sense of where air quality is likely headed. Site-specific modeling needed for refined projections in urban areas.
- Projections are sensitive to emission assumptions.

2010 "A2" Emissions

- Title-IV implementation
- Implementation of existing 1-hr O₃ SIPS
- Implementation of EPA Section 126 NO_x reductions for O₃ season
- Implementation of low-S fuel rules
- <20% VMT penetration for Tier-II motor vehicle rules

Base Years vs. 2010 Anthropogenic Emissions

SAMI States / Domain Emissions

Modeling

- Model: URM-1ATM developed at GIT
- Episodes: 69 days representing 1 winter,
 4 spring and 4 summer periods
- Full range of air quality conditions modeled, including high PM_{2.5} days.
- Model results were evaluated for base periods. Good performance was found for sulfate and organic carbon.

Changes in Daily Sulfate Aerosol: Example of High Sulfate Day

Changes in Daily Sulfate Aerosol: Example of Moderate Sulfate Day

Changes in Daily Organic Aerosols: Example of High OC Day

Changes in Daily Organic Aerosols: Example of Moderate OC Day

Changes in Annual Sulfate at Shenandoah & Great Smoky Mts.

Changes in Annual Organic Aerosol at Great Smoky Mts. & Shenandoah

Average Sulfate Changes in Selected Urban Areas: 5-19% Decreases

Base Years ■ 2010

WSH: Washington, DC

ATL: Atlanta

BHM: Birmingham

PIT: Pittsburgh NSH: Nashville LOU: Louisville

Average Organic Aerosol Changes in Selected Urban Areas: 1-6% Decreases

Base Years ■ 2010

WSH: Washington, DC

ATL: Atlanta

BHM: Birmingham

PIT: Pittsburgh NSH: Nashville LOU: Louisville

Season-Weighted Average Aerosol Levels (2010)

■ Sulfate **■** Organic Mass **■** Scaled Obs. OM

ATL: Atlanta

BHM: Birmingham

NSH: Nashville

LOU: Louisville

WSH: Washington, DC

PIT: Pittsburgh

Summary

- Modeling suggests sulfate and, to a lesser extent, organic aerosols will decrease by 2010 across the eastern U.S.
- Relative reductions in aerosol species will be substantially smaller than associated emission reductions of SO₂, NO_x and VOCs.
- SAMI modeling appears to underestimate the ratio of organic to sulfate aerosols in cities even while it slightly overestimates this ratio at Class 1 sites.